机器学习 — 推荐系统
作者:大树 深圳
更新时间:2018.02.08email:59888745@qq.com
说明:因内容较多,会不断更新 xxx学习总结;
回主目录:
技术架构
1.对内容数据,用户数据,行为数据,进行数据处理,格式化,清洗,归并等;
2.根据业务规则建立推荐系统,内容画像,用户画像,行为画像;3.根据建立的各种画像,进行相关推荐,个性化推荐,相关推荐,热门推荐等;4.推荐形式有,相似度推荐,相关内容推荐,好友推荐,排名推荐.
核心算法是计算相似度,欧几里得距离公式,排名等。
机器学习 — 推荐系统
dennychen in shenzhen
1提供推荐
1。协作过里
2。搜集偏好
3。寻找相近的用户
4。推荐物品,根据用户相似度推荐,根据物品排名推荐
5。匹配商品
6。构建推荐系统
7。基于物品的过里
8。使用数据集
9。基于用户进行过里还是基于物品进行过里
2。计算用户相似度, 欧几里得距离 pearson相关度
3。计算两个人的相似度,本来是推荐平均评分较高的作品,考虑到两个人的爱好相似程度,对评分根据相似度进行加权平均.
In [ ]:
from math import sqrtcritics={ 'dennychen': { 'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'tomastang': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0},'alexye': { 'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5},'Michaelzhou': { 'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 4.0},'josephtcheng': { 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0, 'You, Me and Dupree': 2.5},'antyonywang': { 'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0},'jackfan': { 'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},'Toby': { 'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}print(critics['dennychen']['Lady in the Water'])print(critics['alexye']['Lady in the Water'])# a ['Lady in the Water', 'Snakes on a Plane', 'Superman Returns', 'You, Me and Dupree', 'The Night Listener']# sum_of_squares 3.5
In [37]:
import pandas as pdfrom math import sqrtcritics={ 'dennychen': { 'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'tomastang': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0},'alexye': { 'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5},'Michaelzhou': { 'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 4.0},'josephtcheng': { 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0, 'You, Me and Dupree': 2.5},'antyonywang': { 'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0},'jackfan': { 'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},'Toby': { 'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}} # 欧几里得距离评价,评价2这之间的相似度,值越接近1,相似度越高def sim_distance(prefs, person1, person2): si = {} for item in prefs[person1]: if item in prefs[person2]: si[item] = 1 if len(si) == 0: return 0 a =[item for item in prefs[person1] if item in prefs[person2]] print('a',a) sum_of_squares = sum([pow(prefs[person1][item] - prefs[person2][item], 2) for item in prefs[person1] if item in prefs[person2]]) print('sum_of_squares',sum_of_squares) return 1 / (1 + sqrt(sum_of_squares))print(sim_distance(critics, 'dennychen', 'Michaelzhou'))print(sim_distance(critics, 'dennychen', 'alexye'))
In [38]:
sim_pearson(critics, 'dennychen', 'alexye')
Out[38]:
In [ ]:
In [32]:
import pandas as pdfrom math import sqrtcritics={ 'dennychen': { 'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'tomastang': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0},'alexye': { 'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5},'Michaelzhou': { 'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 4.0},'josephtcheng': { 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0, 'You, Me and Dupree': 2.5},'antyonywang': { 'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0},'jackfan': { 'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},'Toby': { 'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}} # 欧几里得距离评价,评价2这之间的相似度,值越接近1,相似度越高def sim_distance(prefs, person1, person2): si = {} for item in prefs[person1]: if item in prefs[person2]: si[item] = 1 if len(si) == 0: return 0 a =[item for item in prefs[person1] if item in prefs[person2]] print('a',a) sum_of_squares = sum([pow(prefs[person1][item] - prefs[person2][item], 2) for item in prefs[person1] if item in prefs[person2]]) print('sum_of_squares',sum_of_squares) return 1 / (1 + sqrt(sum_of_squares))# 皮尔逊相关度评价def sim_pearson(prefs, person1, person2): # 得到两者评价过的相同商品 si = {} for item in prefs[person1]: if item in prefs[person2]: si[item] = 1 n = len(si) # 如果两个用户之间没有相似之处则返回1 if n == 0: return 1 # 对各自的所有偏好求和 sum1 = sum([prefs[person1][item] for item in si]) sum2 = sum([prefs[person2][item] for item in si]) # 求各自的平方和 sum1_square = sum([pow(prefs[person1][item], 2) for item in si]) sum2_square = sum([pow(prefs[person2][item], 2) for item in si]) # 求各自的乘积的平方 sum_square = sum([prefs[person1][item] * prefs[person2][item] for item in si]) # 计算pearson相关系数 den = sqrt((sum1_square - pow(sum1, 2) / n) * (sum2_square - pow(sum2, 2) / n)) if den == 0: return 0 return (sum_square - (sum1 * sum2/n)) / dendef topMatches(prefs, person, n = 5, simlarity = sim_pearson): scores = [(simlarity(prefs, person, other), other) for other in prefs if other != person] # 对列表进行排序,评价高者排在前面 scores.sort() print('scores:',scores) scores.reverse() # 取指定个数的(不需要判断n的大小,因为python中的元组可以接受正、负不在范围内的index) return scores[0:n]# 利用其他所有人的加权平均给用户推荐def get_recommendations(prefs, person, similarity=sim_pearson): # 其他用户对某个电影的评分加权之后的总和 totals = {} # 其他用户的相似度之和 sim_sums = {} for other in prefs: # 不和自己比较 if other == person: continue # 求出相似度 sim = similarity(prefs, person, other) # 忽略相似度小于等于情况0的 if sim <= 0: continue # 获取other所有的评价过的电影评分的加权值 for item in prefs[other]: # 只推荐用户没看过的电影 if item not in prefs[person] or prefs[person][item] == 0: #print item # 设置默认值 totals.setdefault(item, 0) # 求出该电影的加权之后的分数之和 totals[item] += prefs[other][item] * sim # 求出各个用户的相似度之和 sim_sums.setdefault(item, 0) sim_sums[item] += sim # 对于加权之后的分数之和取平均值 rankings = [(total / sim_sums[item], item) for item, total in totals.items()] # 返回经过排序之后的列表 rankings.sort() rankings.reverse() return rankingssim_distance(critics, 'dennychen', 'Michaelzhou')# sim_pearson(critics, 'Lisa Rose', 'Gene Seymour')topMatches(critics, 'dennychen', n = 3)# get_recommendations(critics, 'Toby')# get_recommendations(critics, 'Toby', similarity=sim_distance)
Out[32]:
In [ ]: